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ABSTRACT

The impact of future anthropogenic forcing on the frequency of tropical storms in the North

Atlantic basin has been the subject of intensive investigation. However, whether the number

of North Atlantic tropical storms will increase or decrease in a warmer climate is still heavily

debated and a consensus has yet to be reached. To shed light on this issue, we use a recently

developed statistical model, in which the frequency of North Atlantic tropical storms is

modeled by a conditional Poisson distribution with rate of occurrence parameter that is a

function of tropical Atlantic and mean tropical sea surface temperatures (SSTs). We show

how the disagreement among dynamical modeling projections of late 21st century tropical

storm frequency can be largely explained by differences in large scale SST patterns from

the different climate model projections used in these studies. Our results do not support

the notion of large (˜200%) increases in tropical storm frequency in the North Atlantic

basin over the 21st century in response to increasing greenhouse gases (GHGs). Because the

statistical model is computationally inexpensive, we use it to examine the impact of different

climate models and climate change scenarios on the frequency of North Atlantic tropical

storms. We estimate that the dominant drivers of uncertainty in projections of tropical

storm frequency over the 21st century are internal climate variations and systematic inter-

model differences in the response of SST patterns to increasing GHGs. Relative to them,

uncertainties in total GHG emissions or other climate forcings, within the scenarios explored

here, represent a minor source of uncertainty in tropical storm frequency projections. Our

results suggest that reducing uncertainty in future projections of North Atlantic tropical

storm frequency may depend more critically on reducing the uncertainty in the sensitivity

of tropical Atlantic warming relative to the tropical mean, in response to GHG increase,
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than on improving dynamical or statistical downscaling techniques. Moreover, the large

uncertainties on century scale trends that are due to internal climate variability are likely to

remain irreducible for the foreseeable future.

As a further illustration of the statistical model’s utility, we model projected changes in

US landfalling tropical storm activity under a variety of different climate change scenarios

and climate models. These results are similar to those for the overall number of North

Atlantic tropical storms, and do not point to a large increase in US landfalling tropical

storms over the 21st century in response to increasing GHGs.
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1. Introduction

The investigation of the effects of greenhouse gas-dominated warming on tropical storm

activity in the North Atlantic basin has been the topic of a number of studies with contra-

dicting results and conclusions. Some studies point to an increase in tropical storm frequency

(Henderson-Sellers et al. 1998; Emanuel 2005; Mann and Emanuel 2006; Oouchi et al. 2006;

Holland and Webster 2007), others to a decrease (Bengtsson et al. 2007; Knutson et al. 2008;

Gualdi et al. 2008; Bender et al. 2010), while others suggest a possibility for either an increase

or decrease (Emanuel et al. 2008; Sugi et al. 2009; Zhao et al. 2009). The interested reader

is pointed to Knutson et al. (2010) for a recent review. These results are based on both

statistical and dynamical models with the dynamical models having structural differences

(grid resolutions, parameterizations, etc.), using different control and perturbation periods,

and in some cases specifying different forcing scenarios (particularly for non-greenhouse gas

forcings, such as aerosols).

As outlined in Vecchi et al. (2008), the main argument in support of projecting a large

(˜200%) 21st century increase in tropical storm activity is related to the projected substantial

increase of Atlantic sea surface temperature (SST) in climate model scenarios, assuming a

causal relation from local SST to tropical storm count. The underlying idea is that a warmer

Atlantic SST (local effect) is the primary factor influencing the tropical storm genesis and

development. Even though in the present climate a warm Atlantic SST is a necessary condi-

tion for the genesis and development of tropical storms, recent studies have suggested that

the remote influence of tropical SST outside of the Atlantic also plays a key role in providing

the atmospheric conditions necessary for the tropical storm formation (e.g., Swanson 2008;
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Vecchi et al. 2008). In this case, the relative (rather than absolute) increase in Atlantic

SST with respect to the tropical mean SST represents a better indicator of North Atlantic

tropical storm activity.

The disagreement among the different dynamical modeling studies is both in terms of

magnitude and sign of the change in tropical storm frequency under projected human-induced

climate warming (e.g., Trenberth 2005; Shepherd and Knutson 2007; Vecchi et al. 2008; Knut-

son et al. 2010). One natural question is: could it be that existing dynamical downscaling

model studies actually agree, within a certain context, about the effects of climate change

on the tropical storm activity in the North Atlantic basin? In this article, we argue that

this is the case, and we further outline dominant sources of the large disagreement in the

projections.

Apart from information about changes in tropical storm activity in a warmer climate

for the entire North Atlantic basin, changing frequency of US landfalling tropical storms is

of greater societal relevance (e.g., Pielke and Landsea 1998; Rappaport 2000; Pielke et al.

2008; Villarini and Smith 2010). Pielke (2005) focused on hurricane destruction and did

not find increasing or decreasing trends over the historical period. However, to the best of

our knowledge only Knutson et al. (2008) has examined projections of increasing greenhouse

gases on the frequency of US landfalling tropical storms over the 21st century, finding a

30% reduction in US landfalling hurricanes compared to an 18% reduction in the basinwide

hurricanes. Therefore, the effects of different climate models for a given scenario, as well as

the impact of different climate change scenarios for a given model on projected activity of

US landfalling tropical storms still remains an open question.

Using the recently proposed statistical model by Villarini et al. (2010), the main points
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addressed in this study revolve around:

i. reconciling differing model projections of changes in the frequency of North Atlantic

tropical storms in a warmer climate;

ii. examination of the impact of different climate models and climate change scenarios on

North Atlantic and US landfalling tropical storm activity.

The paper is organized in the following way. In the next section we briefly describe the

statistical model used to assess changes in tropical storm activity, followed by Section 3 in

which we discuss the results. The main points of the study are summarized in Section 4.

2. Statistical Model

In a recent study, Villarini et al. (2010) developed a Poisson regression model in which

the count of tropical storms N i has a conditional Poisson distribution of the form:

P (Ni = k|Λi) =
e−ΛiΛk

i

k!
[k = 0, 1, 2, . . . ] (1)

where Λi is a non-negative random variable and represents the rate of occurrence for the ith

year in the record. Different covariates related to the tropical storm genesis, development,

and tracking (tropical Atlantic and tropical mean SSTs, North Atlantic Oscillation, and

Southern Oscillation Index) were considered to describe the variability over time of Λi.

Villarini et al. (2010) modeled the rate of occurrence of US landfalling tropical storms,

together with the tropical storm frequency for the entire North Atlantic basin. They used
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different penalty criteria for variable and model selection, two different SST datasets [NOAAs

Extended Reconstructed (ERSSTv3b; Smith et al. 2008) and UK Met Offices HadISSTv1

SST (HadISSTv1; Rayner et al. 2003) data], as well as two different time series of counts

for the North Atlantic basin lasting longer than two days [the original (uncorrected) tropical

storm record maintained by the National Hurricane Center (Jarvinen et al. 1984; Neumann

et al. 1993), and one with a correction for the estimated undercount associated with a

changing observation network (Landsea et al. 2010)].

One of the main findings was that both tropical Atlantic and tropical mean SSTs are

always significant covariates in explaining the variability exhibited by the tropical storm

counts over the period 1878-2008. It is interesting to note that the coefficients for the two

SST covariates have similar magnitudes but opposite signs (positive for tropical Atlantic

SST and negative for the tropical mean SST), suggesting that in terms of tropical storm

counts, an increase in tropical Atlantic SST would be offset by an increase in the tropical

mean SST of the same magnitude.

In this study we use the parsimonious model recommended in Villarini et al. (2010) for

the homogenized tropical storm count with the correction by Landsea et al. (2010). In our

approach, the logarithm of the rate of occurrence of tropical storms can be statistically

modeled as a linear function of only tropical Atlantic and tropical mean SSTs:

Λi = exp[b0 + b1SSTAtl + b2SSTTrop] (2)

where SSTAtl represents tropical Atlantic SST, while SSTTrop represents the tropical mean

SST. For the overall tropical storm activity for the North Atlantic basin, based on ERSSTv3b
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(HadISSTv1) SST dataset b0 is estimated as 2.11 (2.10), b1 as 1.05 (1.02), and b2 as -1.12

(-1.05). For US landfalling tropical storms, b0 is estimated as 1.24 (independently of the

SST dataset), b1 as 0.89 and 0.86, and b2 as -0.89 and -0.86 based on ERSSTv3b and

HadISSTv1 SST datasets, respectively. The coefficients of these two SST predictors point

to the importance of the differences between tropical Atlantic SST and tropical mean SST

in describing the frequency of North Atlantic and US landfalling tropical storms. Consult

Villarini et al. (2010) for more details.

Even though none of the results in Villarini et al. (2010) point to tropical Atlantic SST as

the only predictor necessary to describe variability of tropical storm frequency in the North

Atlantic basin, in this study we also include the results for a Poisson regression model, in

which the rate of occurrence Λi is a linear function (via a logarithmic link function) of only

tropical Atlantic SST:

Λi = exp[β0 + β1SSTAtl] (3)

We have summarized the modeling results in Figure 1 and Table 1. For the North Atlantic

tropical storm frequency, β0 is estimated as 2.12 (for both ERSSTv3b and HadISSTv1), while

β1 is estimated as 0.42 for ERSSTv3b and 0.47 for HadISSTv1. As far as US landfalling

tropical storm frequency is concerned, β0 is estimated as 1.25 (for both ERSSTv3b and

HadISSTv1), while β1 is estimated as 0.37 for ERSSTv3b and 0.43 for HadISSTv1.
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3. Results

a. Comparison Between Statistical and Dynamical Model Projections

We compare the results that we would obtain from the statistical model in equation (2)

with published results from dynamical and hybrid statistical dynamical models (Oouchi et al.

2006; Bengtsson et al. 2007; Knutson et al. 2008; Gualdi et al. 2008; Emanuel et al. 2008;

Sugi et al. 2009; Zhao et al. 2009; Bender et al. 2010). All of these works explored the impact

of climate changes as projected by the climate models used for the Intergovernmental Panel

on Climate Change Fourth Assessment Report (IPCC-AR4). However, different climate

models, different control and perturbation periods and often different implementations of

the “benchmark” forcing scenarios were used in each study. As input for the statistical

model we use tropical Atlantic and tropical mean SST time series from the corresponding

scenario using the same climate models, and control and perturbation periods as each of

these eight studies, for a total of 26 different cases.

We have summarized our results in Figure 2. For illustration, we have also included

the results obtained from a statistical model in which the rate of occurrence of tropical

storms depends only on tropical Atlantic SST (Figure 1). Since all the dynamical and

statistical/dynamical studies to which we are comparing the statistical model have an explicit

duration threshold in their definition of tropical cyclone (Oouchi et al. 2006; Bengtsson

et al. 2007; Knutson et al. 2008; Gualdi et al. 2008; Emanuel et al. 2008; Sugi et al. 2009;

Zhao et al. 2009; Bender et al. 2010), it is appropriate that we use the statistical model of

Villarini et al. (2010) built on the homogenized data of Landsea et al. (2010) which excludes

storms lasting two days or less. When comparing our results (using the median as reference,
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and both tropical Atlantic and tropical mean SSTs as predictors for the statistical model)

against those from the dynamical models, we observe a very good agreement, with the vast

majority of the dynamical models’ points within the 90% prediction intervals of our statistical

model (Figure 2, top panels). We obtain a correlation coefficient of 0.67 and 0.68 (based on

ERSSTv3b and HadISSTv1 SST datasets, respectively), indicating that we explain with a

very simple observationally-derived model close to half of the variance exhibited across the

various modeling studies, with a root mean squared error (RMSE) of 27.6% and 24.6%, and

a mean absolute error (MAE) of 23.4% and 20.3%. We have also computed the correlation

coefficients for the subsets of modeling results from Emanuel et al. (2008), Sugi et al. (2009),

and Zhao et al. (2009). Using the statistical model based on ERSSTv3b (HadISSTv1) data,

for the subset of Emanuel et al. results, we obtain a correlation coefficient of 0.66 (0.60),

explaining 43% (36%) of the variance among these results. For the subset of Sugi et al.

results, the correlation coefficient is equal to 0.85 (0.86), and the explained variance among

the results is 72% (73%). For the subset of results from Zhao et al., the correlation coefficient

is equal to 0.94 (0.95), explaining 88% (90%) of the variance among the results. Despite the

high correlation values, the results derived for the individual studies should be interpreted

with caution due to the small sample size. Nonetheless, they suggest that the statistical

model is able to reproduce the variability in tropical storm projections exhibited both across

different studies and within the same study, increasing our confidence in the utility of the

statistical model.

The agreement between the statistical and dynamical models is rather remarkable, con-

sidering the simplicity of the statistical model, and the variety of dynamical modeling frame-

works used (e.g., different grid resolutions, parameterizations, different control and pertur-
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bation periods, specification of different forcing scenarios). Based on these results, it appears

that differences among the published results can be largely reduced to differences in the cli-

mate model projections of tropical Atlantic SST changes relative to the global tropics used

by the studies. Once these differences are accounted for, these studies tend to provide a

much more consistent picture. That is, uncertainty in projected patterns of tropical SST

changes in the 21st century is a leading cause of uncertainty in North Atlantic tropical storm

frequency projections. Thus, understanding the mechanisms that produce patterns of SST

changes should be a primary effort in the quest to reduce uncertainty in tropical storm

projections.

On the other hand, if we hypothesize that Atlantic SST alone is the primary factor

affecting tropical storm frequency, we arrive at a statistical projection that is inconsistent

with that of the dynamical models (Figure 2, bottom panels). The points do not exhibit a

systematic pattern and have a significant bias (the value of the intercept in the regression

equation is 186.8% and 238.7% compared to the 9.1% and 1.4% obtained when using both

tropical Atlantic and tropical mean SSTs). We obtain a correlation coefficient of 0.14 and

we explain 2% of the variance exhibited by the data. Moreover, the RMSE and MAE are

almost an order of magnitude larger when compared to the statistical model that focuses on

SST change pattern.

These results, in addition to the skill in reproducing the historical record of homogenized

tropical storm frequency (Villarini et al. 2010), provide additional evidence in support of the

idea that tropical Atlantic SST relative to tropical mean SST is a very important factor in

the frequency of occurrence of tropical storms in the North Atlantic basin. That is, none

of the dynamical modeling studies explored here supports the notion that tropical Atlantic
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SSTs on their own are the primary control on North Atlantic tropical storm frequency.

b. Sensitivity of the Projections of North Atlantic Tropical Storm Activity to Different Cli-

mate Models and Climate Change Scenarios

So, why is there such a spread in the projected changes of SST patterns, and thus

in projections of tropical storm frequency? Since the statistical model is computationally

efficient and provides results that compare reasonably well with those from the dynamical

models, we can use it to explore the changes in basinwide tropical storm frequency for the

entire 21st century and for each of the 24 available climate models (see Vecchi and Soden

(2007) for a summary of the different models). In Figure 3 we show the modeled time series

for the SresA1B scenario and eight different climate models. The time series exhibit large

variability, with more active periods alternating to less active ones. We also notice differences

across the different climate models. For instance, both the GFDL and UK Met Office, Hadley

Centre models exhibit very large interannual variability, while CSIRO and Miroc High-res

exhibit less variability. Moreover, some models present a more marked increase over the 21st

century, while others show a decrease. Overall, we obtain a substantial range of results when

computing the slopes of the regression lines over the periods 2001-2050, 2051-2100, and 2001-

2100 (Figure 4). There is a tendency among the models towards decreasing trends during

the 21st century, with most of the projections within ±5 tropical storms per century. For

the period 2001-2050 (2051-2100) we obtain statistically significant (at the 5% level) trends

in five (seven) cases (all of them decreasing). When considering the period 2001-2100, in 11

cases we obtain statistically significant decreasing trends and in four cases increasing trends
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(significant at the 5% level).

Apart from the SresA1B scenario, we have also investigated the sensitivity of the modeling

results to different IPCC Sres climate change scenarios (using 12 climate models, and also

focusing on the GFDL CM2.1 climate model). The scenarios and the approximate CO2

equivalent concentrations to which they correspond (in terms of radiative forcing by both

anthropogenic greenhouse gases and aerosols by 2100) include: SresA1FI: 1550 ppm; SresA2:

1250 ppm; SresA1B: 850 ppm; and SresB1: 600 ppm. We also consider Stable 2000, which

maintains CO2, aerosols, etc. at 2000 levels for 100 years. As shown in Figure 5, these

projection time series from GFDL CM2.1 exhibit little or no increasing trend (only the trend

for the SresA1B scenario for the period 2001-2100 is significant at the 5% level), ranging from

0 to 2 storms/century (based on 2001-2100 trends; black dots) but are not ordered according

to the degree of global temperature increase or equivalent CO2 forcing. Nonetheless, in these

model scenarios one would still experience years and decades with higher activity alternating

to years and decades of reduced activity, as have been experienced over the past 150 years.

When we consider the linear trend over two different periods (2001-2050, and 2001-

2100) from the entire 12-model suite, we do not find an obvious pattern across the different

radiative forcing scenarios. The large inter-model spread in the various projections masks

the tendency for the multi-model average to show a slight increasingly negative trend with

increasing greenhouse gas forcing. There are three main reasons that could explain the

very different outcomes from the different models in these scenarios: internal (unforced)

climate variability within each model, differences in the prescription and model response

to non-greenhouse gas forcings (e.g., aerosol, ozone, changes in land use - land cover), and

differences in model description and parameterization of the physical processes that lead
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to different sensitivity to greenhouse gas increases. We distinguish between the greenhouse

gas and non-greenhouse gas forcings here in particular because the greenhouse gas forcing

is relatively consistent across the different models, whereas the non-greenhouse gas forcings

are specified, and responded to, in substantially different ways among the different models.

Therefore, similar patterns of response across the models would suggest a dominant influence

of the (common) greenhouse gas forcing.

We attempt to provide a first quantitative description of the relative contribution of each

of these three components. The relative impact of internal climate variability vs. total

response to climate forcing agents was examined by computing the correlation coefficient

between the 12-model response vectors for three different scenarios (Sres A2, A1B, and

B1). In other words, we ask to what extent do the models that tend to show relatively

smaller/larger changes in one scenario also show it in the other scenarios? If the pattern of

ordering of the trends across scenarios is inconsistent, then we can infer that the spread is

largely driven by either unforced climate variations or by differences in forcings and responses

to non-greenhouse gas forcings. Focusing on the 2001-2100 trends in SresA2, SresA1B, and

SresB1 (Figure 6 and Table 2), we obtain correlation coefficients of the model response

across scenarios between 0.68 and 0.74, indicating that differences in the model response

to total forcing in those scenarios explain about half of the variance in the tropical storm

response, and with the remaining half originating from the unforced climate variability and

the non-greenhouse gas forcing/response.

The importance of the internal variability is underscored by examining the variability

in the slopes from an ensemble of ten different GFDL CM2.1 model runs for the SresA1B

scenario that differ only in their initial conditions (Figure 5, middle panel): over the period
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2001-2050, the variance for the ten slopes is equal to 6.2, which is about 42% of the variance

exhibited by the 12 climate models for the same scenario. Even though each model has a

different internal variability and the results for the GFDL CM2.1 model cannot be generalized

to all of the other ones, from these estimates we speculate that close to half of the variability

in the results can be attributed to internal variability. As a third more direct way to estimate

the impact of the internal climate variability of the models on the linear trends, we have

examined the preindustrial control runs for all 12 models, resampling the data, creating 1000

12-member sets of 100-year linear trends and comparing the spread of these to the spread of

the three scenarios. In this case, we estimate the internal climate variability in the models

as responsible for close to 50% of the spread in the projections. Based on these auxiliary

calculations, we conclude that about half of the variability exhibited by the different models

in these scenarios comes from internal climate variability, with the rest due to differences in

the specification of or the response to radiative forcing.

To attempt to isolate the role of differences in non-greenhouse gas forcings in these models

on the spread of tropical storm projections, we have also computed correlations based on

model runs with only CO2 changes (doubling or quadrupling with respect to preindustrial

levels). Comparing the slopes from the 12 different models and including the two additional

sets of CO2-only runs, we obtain (Figure 6 and Table 2) correlation coefficients of 0.61 to

0.74 (with the exception of 0.42 for A1B vs. 4×CO2), which indicates that about 45% of the

variance in the trend results can be described as a response to greenhouse gas changes in these

models. To summarize, based on these analyses, we find that almost half of the variability

among the projections of tropical storm frequency from different climate models results

from internal (unforced) climate variability, almost another half results from differences in
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the models’ responses to greenhouse gases, and thus, by process of elimination, a relatively

smaller portion results from differences in the specification of and response to non-greenhouse

gas forcing agents in this set of experiments.

c. Sensitivity of the Projections of US Landfalling Tropical Storm Activity to Different Cli-

mate Models and Climate Change Scenarios

Most of the studies in the literature focus on changes in North Atlantic tropical storm

frequency in a warmer climate, and there is still very limited information about possible

changes in US landfalling tropical storms. To shed light on the possible effects of increasing

temperatures on US landfalling tropical storms, we use the statistical model developed by

Villarini et al. (2010), and use as input the projected time series of tropical Atlantic and

tropical mean SSTs for different climate change forcing scenarios and climate models

In Figure 7 we show the projected US landfalling tropical storm frequency for eight differ-

ent climate models under the SresA1B scenario. The consensus estimate is not for a marked

increase in US landfalling tropical storms projected for the 21st century; however, individ-

ual models project the possibility of trends between -2.64 to +1.32 tropical storm/century

over the 21st century. Moreover, depending on the climate model, we observe a more or

less marked interannual variability, associated with different spatio-temporal SST variability

patterns. When looking at the 24 climate models together (Figure 8), there is not a strong

tendency towards either increasing or decreasing trends, with most of the models having a

slope between ±1.5 tropical storm per 100 years. The impact of internal climate variability

on the estimate of trends in US landfalling numbers can be seen in the decrease in spread
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from the 50-year to the 100-year trends.

When focusing on the impact of different climate change forcing scenarios on the US

landfalling tropical storm frequency, the picture does not change significantly from either

basinwide or the multimodel exploration. As shown in Figure 9 focusing on GFDL CM2.1,

and similar to what was observed in Figure 5, there are no marked increasing trends in these

time series, with slopes between 0 and +1 storm per century for the period 2001 to 2100.

4. Discussion and Conclusions

The main results of this study are as follows:

i. The disagreement among published results concerning increasing or decreasing North

Atlantic tropical storm trends in a warmer climate can be largely explained (close

to half of the variance) in terms of the different sea surface temperature projections

(Atlantic minus tropical mean) of the different climate model projections used. Our

results suggest that reducing the uncertainty in future projections of North Atlantic

tropical storm frequency (for a given emission scenario) may depend more critically

on reducing the uncertainty in projections of the tropical Atlantic warming relative

to the tropical mean, rather than on improving dynamical or statistical downscaling

techniques.

ii. For the SresA1B scenario and 24 climate models, over the 21st century there is a large

spread among projected trends in tropical storm activity in the North Atlantic basin,

with a mean of -0.83 tropical storm/century and a standard deviation of 2.48 tropical
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storm/century. As far as US landfalling tropical storms are concerned, results based

on seven climate models point to a statistically significant increasing trend, while six

point to a decreasing trend.

iii. Exploring several climate change forcing scenarios (SresA1FI, SresA2, SresA1B, SresB1,

Stable 2000) and based on a set of different climate models, the response of tropical

storms in the 21st century does not exhibit a clear monotonic relationship to increasing

“equivalent” greenhouse gas forcing. This statement is valid for both the overall activ-

ity in the North Atlantic basin, as well as for the frequency of US landfalling tropical

storms. This lack of a systematic response to changes in greenhouse gas forcing re-

flects both the large internal climate variability that impacts even 100-year projected

trends, as well as disagreement among climate models as to whether the tropical At-

lantic should warm more or less than the rest of the tropics from increasing greenhouse

gases.

Based on the results from 12 climate models, we estimate that close to 50% of the

variance in the trend results over the period 2001-2100 can be associated with inter-

nal climate variability in the models, with another 50% due to models’ differences

in response to greenhouse gas forcings, leaving only a much smaller percentage to

be associated with the models’ response to non-greenhouse gas forcings in this suite

of experiments. For the upcoming IPCC Fifth Assessment Report, the influence of

non-greenhouse forcings should be re-examined in the newer models, which may in

a number of cases include larger influences, such as enhanced aerosol influence due

to indirect effects, for example. Our results to date suggest that, to the extent that
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the Sres forcing scenarios are relevant, there is a possibility of narrowing the range of

uncertaintity in the projections of Atlantic tropical storm frequency if we can better

understand the mechanisms that control patterns of tropical SST changes in nature

and the models (Xie et al. 2010). However, if our model-based estimates of internal

(unforced) climate variability are robust, there is a considerable level of uncertainty

in climate change projections that will remain effectively “irreducible,” as no current

prospects exist for skillful century-scale predictions of unforced climate variability.

For century-scale projections of tropical storm frequency, the sources of uncertainty

that emerge as dominant (internal variability and structural model uncertainty) are

quite dissimilar to those of global and regional temperature projections, which tend to

be dominated by greenhouse gas emissions and structural model uncertainties (Hawkins

and Sutton 2009).

iv. The statistical model used in this study was trained on a 131-year record of North

Atlantic tropical storms (Villarini et al. 2010). It is parsimonious and requires only

tropical Atlantic and tropical mean SSTs as input to project the distribution of North

Atlantic tropical storm counts for any given year. Because it is observationally-based,

reflects our current understanding of the main physical processes responsible for the

formation of tropical storms in the North Atlantic, and because of its agreement with

the dynamical results, we propose that the use of this model for prediction of tropical

storms under different scenarios is justified.

v. These results provide further supporting evidence for the importance of both Atlantic

and tropical SSTs in describing variations in tropical storm activity in the North At-
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lantic basin.

vi. The projections from the various dynamical models are consistent with observational

behavior as captured through the statistical model using tropical Atlantic and tropical

mean SSTs. Moreover, a ±40% change by the late 21st century is consistent with both

the observed record and with the range of projections of SST patterns. Unfortunately

we are not able to use observations to falsify projected trends of magnitude ±40% at

this point owing to the high levels of estimated internal variability. However, improved

understanding of the physical mechanisms that control patterns of SST changes, in

response to climate forcing agents, should result in better constraints on the range of

uncertainties (Xie et al. 2010).
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Table 1. Summary statistics for the Poisson modeling of North Atlantic tropical storm
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Landfall Corrected
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D. of. F. for the fit 2 2

2 2
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(2×CO2) and quadrupling (4×CO2) with respect to the preindustrial runs. Notice that the
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Fig. 1. Modeling of the US landfalling tropical storms (top panels) and tropical storm count
data (lasting longer than two days and adjusted based on Landsea et al. (2010)) for the entire
North Atlantic basin (bottom panels) using a Poisson regression model in which the rate of
occurrence depends linearly (via a logarithmic link function) only on tropical Atlantic SST.
The points represent the observations; the white line represents the median (50th percentile);
the dark grey region represents the area between the 25th and 75th percentiles; the light grey
region represents the area between the 5th and 95th percentiles. The results by using SST
from the ERSSTv3b (HadISSTv1) dataset are in the left (right) panels. Summary statistics
for these models are presented in Table 1.
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Fig. 2. Comparison of fractional tropical storm count changes between dynamical and
statistical models. In the upper panels, the statistical model uses both tropical Atlantic and
tropical mean SSTs, while in the bottom panels only tropical Atlantic SST was used as a
covariate. The results in the left panels are based on the models constructed using NOAAs
Extended Reconstructed SST dataset, while those on the right using the UK Met Offices
HadISSTv1 SST dataset. The grey lines represent the 90% prediction intervals for the linear
regression model.
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Fig. 3. Projections for the 21st century of the tropical storm counts for the North Atlantic
basin under the SresA1B scenario for eight different climate models using both tropical
Atlantic and tropical mean SSTs as covariates in the statistical model (based on the model
constructed using NOAAs Extended Reconstructed SST dataset). The white line represents
the median (50th percentile); the dark grey region represents the area between the 25th and
75th percentiles; the light grey region represents the area between the 5th and 95th percentiles.
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Fig. 4. Slopes of the regression lines for three periods (2001-2050, 2051-2100, and 2001-
2100) for all the 24 available climate models. These results are based on the projections for
the 21st century of the tropical storm counts for the North Atlantic basin under the SresA1B
scenario, using both tropical Atlantic and tropical mean SSTs as covariates in the statistical
model (based on the model constructed using NOAAs Extended Reconstructed SST dataset).
The solid black curves represent the probability density function for a Gaussian distribution
fitted to the 24 climate models (grey dots; the mean µ and the standard deviation σ are
included). In the box-plots, the limits of the whiskers represent the 5th and 95th percentiles;
the limits of the boxes the 25th and 75th percentiles; the horizontal lines and the squares
inside the boxes are the median and the mean, respectively.
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white line represents the median (50th percentile); the dark grey region represents the area
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Fig. 6. Slopes from the linear fitting of the North Atlantic tropical storm counts over the
period 2001-2100 for 12 climate models under three different Sres scenarios and for model
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Fig. 7. Projections for the 21st century of the US landfalling tropical storm counts under
the SresA1B scenario for eight different climate models using tropical Atlantic and tropical
mean SSTs as covariates in the statistical model (based on the model constructed using
NOAAs Extended Reconstructed SST dataset). The white line represents the median (50th
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the light grey region represents the area between the 5th and 95th percentiles.
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Fig. 8. Slopes of the regression lines for three periods (2001-2050, 2051-2100, and 2001-
2100) for all the 24 available climate models. These results are based on the projections for
the 21st century of US landfalling tropical storms under the SresA1B scenario, using both
tropical Atlantic and tropical mean SSTs as covariates in the statistical model (based on the
model constructed using NOAAs Extended Reconstructed SST dataset). The solid black
curves represent the probability density function for a Gaussian distribution fitted to the 24
climate models (grey dots; the mean µ and the standard deviation σ are included). In the
box-plots, the limits of the whiskers represent the 5th and 95th percentiles; the limits of the
boxes the 25th and 75th percentiles; the horizontal lines and the squares inside the boxes are
the median and the mean, respectively.
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Fig. 9. Projections for the 21st century of the US landfalling tropical storm count for
five different climate change scenarios using the GFDL CM2.1 climate model, and tropical
Atlantic and tropical mean SSTs as covariates in the statistical model (left panels). The
white line represents the median (50th percentile); the dark grey region represents the area
between the 25th and 75th percentiles; the light grey region represents the area between the
5th and 95th percentiles. For the same five climate change scenarios, in the right panel the
slopes of the linear regression line for three periods (2001-2050; 2051-2100; 2001-2100) are
shown. The results are based on the statistical model constructed using NOAAs Extended
Reconstructed SST dataset.
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